Manual do usuário

680 UTG 21 DR

MEDIDOR DE VAZÃO ULTRASSÔNICO CALHA PARSHALL

Índice

Prefácio, Aplicação e Recursos	5
Parâmetros técnicos	6
nstalação	
Posição de instalação	7
Modo de instalação	8
Tela de inicialização	9
Descrição da chave	10
Parâmetros básicos	
P02 20mA Setup	11
P03 Display Mode	11
P04 Probe Height	12
P05 Change Rate	13
P06 Block Distance (Also Known as the Dead Band)	13
P07 Language Selection	14
P08 Length Unit	14
P10-P11Relay Logic1-2	14
P16 Relay Buffer	14
P30 Weir Selection	15
P31 Value C/ Valuei	15
P32 ValueN	15
P33 Hv Depth of Channel	16
P34 Lv	16
P35 Flow Unit	16
P36 Flow Query	16
P37 Top Width	16
P38 Bottom Width	16
Parâmetros avançados	
P40 Damping Time	17
P41 Alarm Output	17
P42 Alarm Delay	17
P43 Threshold Voltage	18
P44 Transmission Power	18

P46 Sound Velocity	18
P48 Safe Distance	19
P50 Mailing Address	19
P51 Set Baud Rate	20
P52 Communication Protocol	20
P53 Floating Point Order	20
P54 Communication Test	20
P55 Setup Time	21
P56 Cumulative Flow Clearing	21
P57 Submerge Rate	21
P58 Power Fail Add	21
P60 Current Analog	
P62 Pulse Width	22
P63 Pulse Equal	22
P66 TP Delay	
P99 Recovery of Parameters	23
Análise de falhas	
1: Sem exibição, exibição de cabeça para baixo, código bagunçado	24
2: Dados do instrumento de salto	
3: Sem eco	26
4: Dados imprecisos do instrumento	
5: 4-20mA Falha de saída de corrente	28
6: Saltando dados do PLC	28
Apêndice 1: Tamanho da porca de parafuso de plástico	29
Apêndice 4: Protocolo de comunicação ModBus-RTU.	30
Apêndice 5: Desenho dimensionais do instrumento integral	31
Apêndice 6: Diagrama de fiação integral do instrumento	32
Apêndice 8: Dimensão do instrumento remoto	33
Apêndice 9: Diafragma de fiação do instrumento remoto	34
Apêndice 10: Interface de saída de pulso	35
Lista de embalagem	36
Recibo do cartão de garantia	37

Prefácio

Obrigado por adquirir o medidor de vazão ultrassônico de canal aberto da Enginstrel Engematic. A base de produção e operação deste produto é 680TU "canal aberto medidor de vazão de açudes".

Este manual apresenta a aplicação, recurso, função, instalação e configuração do medidor de vazão ultrassônico de canal aberto, para que os usuários possam conhecer, instalar, usar e manter este instrumento. Este produto deve ser utilizado com os açudes de medição e é utilizado principalmente para medir o fluxo de esgoto dentro do canal sob um fluxo aberto, parcialmente preenchido e livre condições.

Aplicação

Medição contínua e sem contato de vazão, pode ser usado para emissário de esgoto de fábrica, irrigação de terras agrícolas, fluxo de rios e outros ircunstâncias.

Recurso

Pode exibir fluxo instantâneo, fluxo cumulativo, nível de líquido, forma de onda de eco, curva histórica.

Com armazenamento de dados, função de correção automática de erros com tempo de armazenamento de dados de até a 8 anos.

Pode consultar o fluxo cumulativo de qualquer período dos últimos 8 anos e obter diariamente, fluxo mensal e anual.

Fluxo instantâneo de saída de corrente de 4 ~ 20mA, saída RS485 / ModBUS instantâneo fluxo, fluxo total, nível de líquido.

Sensor de temperatura integrado internamente fornece temperatura em tempo real compensação pela velocidade do som.

Chip de relógio integrado interno para exibir a data e hora atuais.

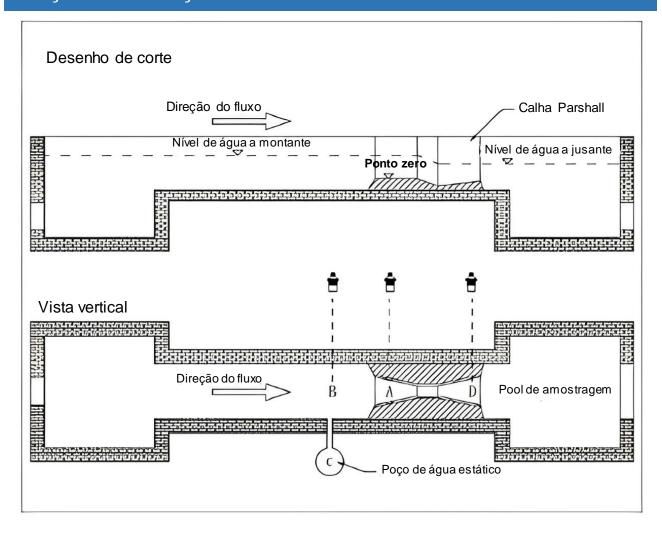
Com simulação de corrente de 4 ~ 20mA, funções de diagnóstico RS485

A operação no local está disponível com display de cristal líquido e teclado

Displays em chinês e inglês estão disponíveis;

Realizar detecção automática de distúrbios e interferências elétricas na local supressão.

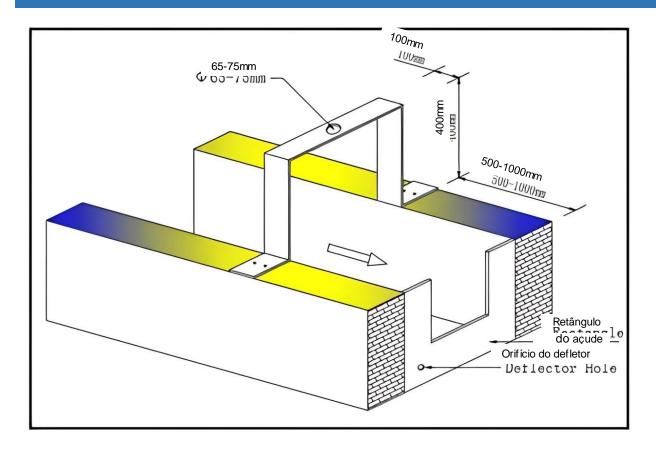
A medição sem contato possui uma longa vida útil.


Parâmetros técnicos

Itens		Integral	Remoto
Fluxo instantâneo		IUs-32000 m ₃ /h	
Faixa de medição	Fluxo cumulativo	40000000m3	
	Nível	0.35m-3.000m(6.000m)	/ Banda morta 0.30m
Precisão de	Fluído	Açude triangular 1-5% Calha Parshall 2-3%	/ Açude retangular 3 - 5% /
medição	Nível	±0.3%FS* (Condição pa	adrão*)
Visor do medi	dor	Fluxo instantâneo, fluxo líquido, eco	cumulativo, nível de
Fonte de alim	entação	DC18-3SV / 60mA ou A	C85-265V / 3W
Registro de flu	JXO	Pode consultar o fluxo o momento durante os últ	
	Corrente analógica	12bit,com carga inferior a 500 Ohm	
Saída Sinal digital		RS485/Mod8us acordo / HART5.0	
Salua	Valor de comutação	Valores de comutação de 2 circuitos	
	Saída de pulso	N/A	6-IOOms Pulso
	Ambiente	-20°C ~ +60°C*	
Temperatura	Processo	-20 °C ~ + 90 °C (especificar em ordem onde uma temperatura superior a +60°C é uma necessidade	
Interface	Elétrico	M20×1.5mm	PG11 conexão à prova d'água
Processo		G2"(NPT2")	
	Transmissor	Liga de alumínio	ABS
Materiais Sondar		ABS/ETFE/PTFE	
Nível à prova	d'água	IP67	IP65
Classe de proteção contra explosão		EX d [iaGa]ll.BT4Gb	N/A

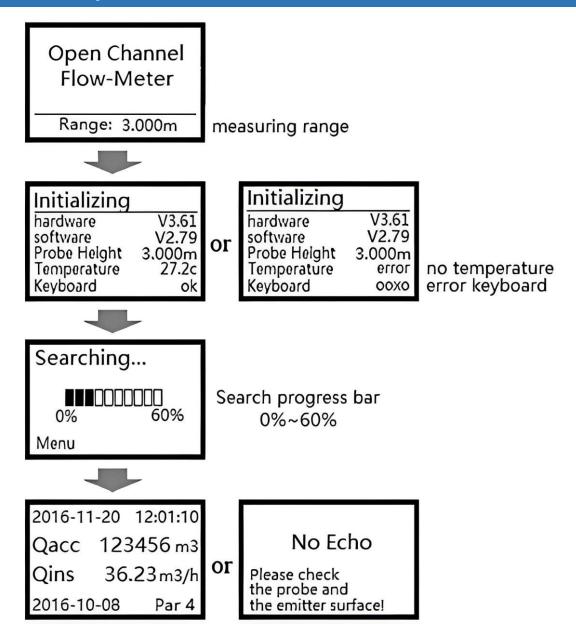
- ➤ EX d [iaGa] BT4Gb é um certificado à prova de explosão intrínseco composto, com o circuito de segurança intrínseca mais invólucro à prova de explosão e é mais seguro.
- \succ Quando a temperatura ambiente está em -40 °C \sim -20 °C, o LCD não pode exibir corretamente, mas o instrumento pode funcionar. LCD pode ser restaurado.

Posição de instalação



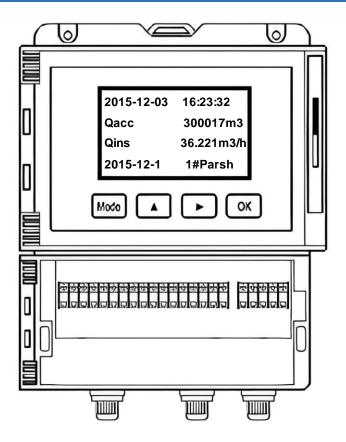
Em geral, o monitor de fluxo de canal aberto pode ser instalado nas posições A, B e C, conforme mostrado na figura acima.

- ➤ O nível do líquido é proibido de entrar no distrito do bloco do instrumento, a altura do suporte não deve ser inferior a 350 mm.
- Quando há bolhas ou objetos flutuantes na superfície do líquido, ele só pode ser instalado na posição C ou a montante para bloquear a espuma.
- ➤ Quando a calha Parshall No.1 ou No.2 é usada, recomenda-se montar o instrumento na posição B, C devido à garganta estreita.
- ➤ A capacidade de drenagem a jusante deve ser maior do que a água a montante; caso contrário, deve ser estabelecida uma relação de submersão para corrigir o fluxo.


Modo de instalação

- ➤ O medidor de vazão de canal aberto deve ser usado em conjunto com a ranhura do açude e a placa do açude; este instrumento suporta ranhura Bachel, açude triangular, açude retangular, açude trapezoidal, tanque de medição retangular sem garganta e ranhura PALMER-BOWLUS.
- > A altura do suporte deve ser superior a 400 mm e o nível do líquido é estritamente proibido de entrar na área cega do instrumento.
- ➤ A largura do canal na posição fixa do suporte deve ser maior que 200 mm para evitar que o instrumento receba ecos do solo.
- ➤ Para garantir a precisão da medição, um guarda-sol precisa ser instalado acima da tampa traseira da sonda para evitar a luz solar direta na sonda.
- > Se o instrumento e a sonda estiverem em um ambiente úmido por muito tempo, o adesivo de vidro deve ser aplicado na entrada e saída da sonda e na costura da tampa.

Tela de inicialização



Exibe o resultado da medição

- A faixa de medição, a versão do hardware e a versão do software podem ser inconsistentes com a figura acima, a exibição real do medidor deve prevalecer.
- > O limite superior da barra de progresso da pesquisa depende da potência de transmissão do menu P44.
- > Se o teclado apresentar um erro durante a inicialização, o instrumento exibirá qual tecla está com erro. O indica normal, x indica erros.
- > Em caso de erro de teclado, todo o teclado será bloqueado e nenhuma tecla responderá ao ser pressionado.

Descrição da chave

Tecla [Modo]

♦ Entrar / sair do menu

Tecla [OK]

- ♦ Digite a edição
- ♦ Confirme / saia da edição

Tecla [▲]

- ♦ Rolar para o próximo menu
- ♦ Modifique o número na seleção do cursor / lista
- ♦ Em condições de trabalho, pressione esta tecla por um longo tempo, o instrumento mudará o modo de exibição temporariamente. 40 segundos após afrouxar esta tecla, o instrumento retorna ao modo de exibição anterior.

Tecla [▶]

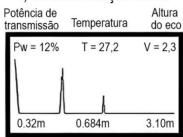
- ♦ Mover o cursor
- ♦ Rolar para o menu anterior
- ♦ No modo de exibição de eco, a forma de onda pode ser ampliada.

Parâmetros básicos

(a senha é "1000")

P02: 20mA setup

Menu	P02: Insira aqui o fluxo instantâneo máximo	
Valor numérico Faixa de valores		0 ~ 32000m3 / h
valor numerico	Valor padrão	400m3/h


P03: Display Mode

Menu	P03		
	Opções do menu	Conteúdo	Comentário
Parâmetro	Fluxo	Exibe a vazão instantânea e a vazão total	Padrão
	Nível & Distância	Nível de exibição, distância, valor atual	
	Curva de Eco	Forma de onda de eco de exibição, temperatura	

1) Modo de ex Data atual	kibição de fluxo Hora atual
2015-12-03	16:23:32
Qacc	30017m3
Qins	36.221m3/h
2015-12-1	1#Parsh
Tempo de limpeza	Tipo de açude

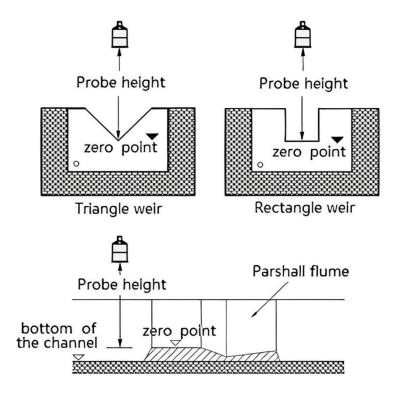
c) Modo de exibição de eco

Faixa de distância da banda morta

Descrição:

- ➤ "S" é para a taxa de reação, o valor numérico subsequente de 0 a 3 representa a velocidade de reação de Rápido, Normal, Lento, Mais Lento, respectivamente.
- ▶ "D" é o tempo de amortecimento e o valor subsequente representa segundos.

- > "R" é para o estado do relé, X representa que está desconectado, O representa que está fechado.
- ➤ Estado de trabalho, X indica o envio de ondas, O indica ter recebido eco enviado da superfície do líquido.


Nota:

- ▶ Pressione e segure a tecla [▲] para alternar temporariamente o modo de exibição. Solte
 [▲] por 40 segundos para retornar ao modo de exibição original.
- ➤ Mude temporariamente o modo de exibição, a saída de corrente de 4-20mA permanece inalterada.
- ➤ No modo de exibição de eco, pressione e segure a tecla [►] para ampliar a forma de onda.

P04: Probe Height

Menu	P04: Insira a distância entre a superfície da sonda e o ponto zero	
Valor	Faixa de valores	0.350m ~ 10.000m
Valui	Valor padrão	3.000m

A relação entre a altura da sonda e o ponto zero é mostrada na figura abaixo:

- O ponto zero não é igual à parte inferior do canal.
- ➤ O ponto zero é o plano horizontal exatamente quando o fluxo se torna zero.

P05: Change Rate

Menu	P05: selecione corretamente a taxa de mudança de acordo com a taxa de mudança de nível/distância do líquido		
	Rápido	Mais rápido	Padrão
Parâmetros	Normal	Normal	
	Lento	Lento (com mudança de nível não superior a 50 cm/min)	
	Mais lento	Padrão	
Menu relacionado	P40:Tempo de amortecimento		

➤ Quanto mais lenta a reação, maior o amortecimento, melhor a estabilidade dos dados, mas as mudanças de dados correspondentes são lentas.

P06: Dead Band

Menu	P06: Insira aqui a distância do bico, degrau e feixe até a superfície da sonda		
Faixa de valores		0~10.000m	
Valor numérico	Valor padrão	0,35 m (dependendo da faixa de medição da sonda)	

Banda morta significa a distância na qual o instrumento bloqueia o eco que pode afetar a medição normal, ao definir a distância do bloco, ele pode reduzir a influência do bocal do tubo de extensão, degraus e feixes na medição do instrumento.

- ➤ Quando a banda morta é menor que a banda morta inerente da sonda, a banda morta é inválida. Consulte a etiqueta do medidor para obter a banda morta inerente da sonda.
- > O nível do líquido não deve entrar na banda morta do instrumento!
- > A distância entre o nível do líquido e a superfície da sonda não deve ser inferior à zona morta.
- ➤ O fabricante não se responsabiliza por qualquer acidente causado por mau funcionamento do instrumento devido à entrada de líquido na banda morta.

P07: Language

Menu	P07	
Parâmetro	Inglês	Padrão
Farameno	Chinês	

P08: Length Unit

Menu	P08	
Parâmetro	Metro	Padrão
Farameno	Pés	

P10-P11: Relay Logic 1-2

Menu	P10-P12	
Parâmetro	Faixa de valores	-10.000m~+10.000m
	Padrão	<+0,00 metros
Menu relevante	P16 Buff de relé	

Lógica simples: se o nível atender à lógica, o relé é fechado; se o nível não atender à lógica, o relé é desconectado.

llustração (buffer de relé 0,030m):

Exemplo 1: "> +03,00 m" significa que o relé é fechado quando o nível do líquido é superior a 3,00 m e é desconectado quando o nível é inferior a 2,97 m.

Exemplo 2: "<+02,00 m" significa que o relé é fechado quando o nível do líquido é inferior a 2,00 m de tração e é desconectado quando o nível é superior a 2,03m.

P16: Relay Buff

A fim de reduzir a ação frequente do nível crítico do relé, o relé não atuará até que exceda ou esteja abaixo do nível do líquido em uma certa quantidade. Essa quantidade é o buffer de retransmissão.

Menu	P16: Buff de Relé	
Davâmatra	Faixa de valores	0.000m~1.000m
Parâmetro	Padrão	0.030m
Menu relacionado	P10-P13 Lógica do relé 1-4	

P30: Select Weir

Menu	P30 Selecione a placa de açude / açude que combina com o instrumento					
	Opções do menu	Descrição	Garganta (mm)	Valor C (m3/s)	Valor N	Remar k
	Rec	Açude retangular	-	1.000	1.500	
	90Tri	Açude triangular de 90 graus	-	1.412	2.500	
	1 Par	#1Calha Parshall	25	0.060	1.550	Padrão
	2 Par	#2Calha Parshall	51	0.121	1.550	
Parâmetros	3 Par	#3Calha Parshall	76	0.177	1.550	
	4 Par	#4Calha Parshall	152	0.381	1.580	
	5 Par	#5Calha Parshall	228	0.535	1.530	
	6 Par	#6Calha Parshall	250	0.561	1.513	
	7 Par	#7Calha Parshall	300	0.679	1.521	
	Outro	Outra calha	-	1.000	1.000	
	Chezy	Fórmula Chezy	-	0.002	0.020	
Menu relacionado	P31 valor C / valor i; P32 Valor de N;P33 Profundidade do canal de alta tensão;; P34 Lv; P37 Largura superior; P38 Largura inferior					

Nota:

- ➤ Açude diferente tem valor diferente C e N. Após a seleção do açude, o valor C e N serão modificados automaticamente.
- > Quando P30 é Rec ou outro, é necessário inserir manualmente o valor C, valor N, profundidade do canal de Hv.
- ➤ Quando P30 é Chezy, é necessário inserir manualmente o valor i, valor N, profundidade do canal de alta tensão, largura superior e largura inferior.

P31: Value C/ Value i

Menu	Coeficiente de fluxo / inclinação hidráulica (mudará com P30)		
Parâmetros	Faixa de valores	0.000m~32.000m3/s	

P32: Value N

Menu	Índice de fluxo / rugosidade (mudará com P30)		
Parâmetros	Escopo de valor	0.000m~9.999	

P33: Hv channel depth

Menu	Insira a profundidade do canal		
Parâmetros	Faixa de valores	0.000m~3.000m	
r ai ai ii eli 05	Padrão	3.000m	

P34: Lv

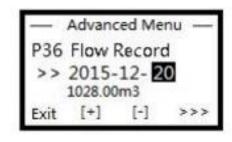
Menu	P34: Nível inicial do fluxo		
Parâmetros	Faixa de valores	0.000m~1.000m	
Faramenos	Padrão	0.005m	

Nota: quando o nível do líquido é inferior a Lv, o fluxo é ignorado. Somente quando o nível do líquido for maior que Lv, o fluxo será calculado.

P35: Flow Unit

Menu	P35		
	m3/h	m3/h	Padrão
Parâmetros	m3/s	m3/s	
	L/s	L/s	

P36: Flow Record


De acordo com o tempo de entrada, exiba o fluxo acumulado registrado às 01:00 desse dia.

Por exemplo, para consultar o fluxo diário em 20 de dezembro de 2015

a: primeiro insira o tempo 2015-12-20, ele exibirá 1028,00m3

b: em seguida, insira o horário 2015-12-21, ele exibirá 1101,05m3

c: Subtraia o fluxo acumulado dos dois dias sucessivos 1101,05-1028,00 = 73,05m3 para obter o fluxo diário de 2015-12-20

P37: Top Width

Menu	Insira a largura superior do canal (no caso de P30 = Chezy)	
Parâmetros	Faixa de valores	0.000m~10.000m3/s

P38: Bottom Width

Menu	Insira a largura inferior do canal (no caso de P30 = Chezy)		
Parâmetros	Faixa de valores	0.000m~10.000m3/s	

Para entrar no menu de parâmetros avançados, a senha é "0101"

A definição de parâmetros avançados deve ser guiada pelo fabricante!

P40: Damping Time

Menu	P40		
Valor	Faixa de valores	0~30s	
	Valor padrão	12s	

Quanto menor for o amortecimento, mais rápida se torna a velocidade de resposta do instrumento; quanto maior o amortecimento, mais estáveis os dados se tornam. Por favor, escolha este parâmetro razoavelmente.

P41: Alarm Output

Menu	P41		
	22mA	Durante o alarme, a saída de corrente é de 22mA	
Parâmetro 3.8mA		Durante o alarme, a saída de corrente é de 3.8 mA	
	Hold	Sem alarme	Padrão
Menu relevante	P02: 20mA Setup P42: Alarm Time P48: Safety Dist.		

Nota:

- Quando o contador de atraso de falha terminar, o instrumento relatará a falha ao PLC através de corrente de 4 ~ 20mA.
- > Quando o nível do líquido entrar a uma distância segura, o instrumento emitirá um alarme.
- Quando o instrumento tiver procurado por um longo tempo, o instrumento emitirá à força uma corrente de 3.8 mA como alarme.
- > Fechar a saída de alarme aumentará o risco de transbordamento do tanque, recomendase que o usuário abra a saída de alarme.

P42: Alarm Time

Menu	P42		
Valor	Faixa de valores	0~400s	
Valor	Valor padrão	200s	
Menu relevante	P41: Alarm Output		

Quando o contador de atraso de falha terminar, o instrumento relatará a falha ao PLC através de corrente de 4 ~ 20mA.

P43: Threshold Voltage

Menu	P43		
	0.3v	Ignore o eco abaixo de 0.3v	Padrão
	0.6v	Ignore o eco abaixo de 0.6v	
Valor	0.9v	Ignore o eco abaixo de 0.9v	
	1.2v	Ignore o eco abaixo de 1.2v	
	1.5v	Ignore o eco abaixo de 1.5v	

Nota:

- ➤ A linha pontilhada na figura à direita é a tensão limite.
- ➤ Quando a tensão limite é de 0,3 v, a linha pontilhada não aparecerá.
- ➤ O aumento da tensão limite reduzirá a sensibilidade do instrumento.

P44: Output Power

Menu	P44		
	0~30%	A potência de saída muda entre 0 ~ 30%	
Parâmetro	0 ~ 60%	A potência de saída muda entre 0 ~ 60%	
	0~100%	A potência de saída muda entre 0 ~ 100%	Padrão
	100%	A potência de saída é sempre 100%	

Quanto menor for a potência de saída, menor será a distância do bloco e a faixa de medição.

Quanto maior for a potência de saída, maior será a distância do bloco e a faixa de medição.

P46: Sound Speed

Quando o instrumento é usado em locais onde gasolina, álcool e acetona são voláteis, uma vez que a velocidade de transmissão da onda ultrassônica não é de 331m/s nesses gases, é necessário modificar a velocidade do som, a fim de medir a distância e o nível do material com precisão.

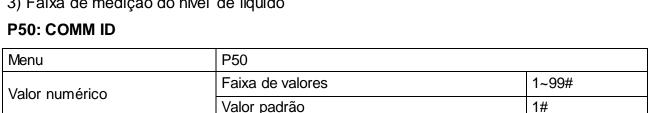
Menu	P47		
Valor	Faixa de valores	200~400m/s	
Valui	Valor padrão	331m/s	
Menu relevante	Nenhum		

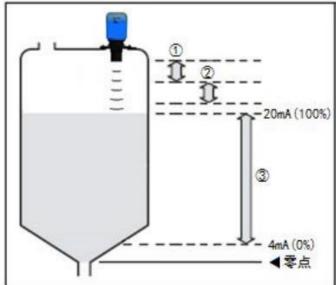
Velocidade do som do gás comum:

Nome do gás	Velocidade do som m/s	Nome do gás	Velocidade do som m/s	Nome do gás	Velocidade do som m/s
Ar	331	Hélio	384	Álcool	300*
Dióxido de carbono	286	Gasolina	260*	Gás de amônia	290*
Azoto	345	Petróleo bruto	220*	Óleo diesel	325*

^{*}Nota: a concentração, a pressão do ar e a temperatura afetam a velocidade do som. A velocidade do som na forma acima é apenas para sua referência.

P48: Safety Dist


Para evitar que o nível do líquido entre na banda morta do instrumento, uma distância segura é especialmente definida fora da banda morta.


Menu	P48	
Volor numárico	Faixa de valores	0.000~5.000m
Valor numérico	Valor padrão	0.000m
Menu relacionado	P06: Block Dist P41: Alarm Output	

Defina uma distância de segurança fora do distrito do bloco, para evitar que o nível do líquido entre no distrito do bloco e cause acidentes.

Quando o nível do líquido está dentro da distância de segurança, o instrumento envia um alarme através de corrente de 4 ~ 20mA. A figura à direita mostra a relação relativa entre o distrito do bloco, a distância de segurança e a faixa de medição do nível do líquido.

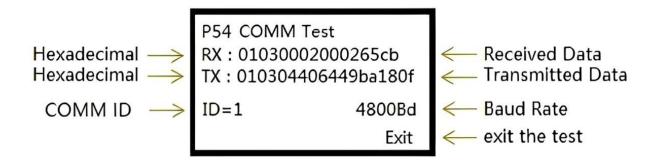
- 1) Distrito do bloco
- 2) Distância de segurança
- 3) Faixa de medição do nível de líquido

P51: Baud Rate Setup

Menu	P51		
	1200Bd	Taxa de transmissão de 1200Bd	
	2400Bd	Taxa de transmissão de 2400Bd	
Parâmetros	4800Bd	Taxa de transmissão de 4800Bd	Padrão
	9600Bd	Taxa de transmissão de 9600Bd	
	19200Bd	Taxa de transmissão de 19200Bd	

P52: Protocol

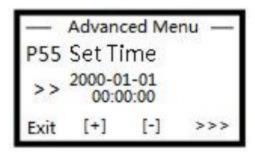
Menu	P52		
D. A. Maria	ModBus-RTU	Conheça o protocolo RTU padrão ModBus	Padrão
Parâmetros	Reservado		


P53: Sequence of Floating-point Numbers

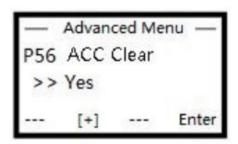
Menu	P53		
	1234	A sequência de números de ponto flutuante de 4 bytes é 1234	Padrão
Parâmetros	4321	A sequência de números de ponto flutuante de 4 bytes é 4321	
	3412	A sequência de números de ponto flutuante de 4 bytes é 3412	
	2143	A sequência de números de ponto flutuante de 4 bytes é 2143	

Observe o requisito de DCS / PLC para a sequência de números de ponto flutuante de 4 bytes. A sequência de números de ponto flutuante do instrumento e DCS/PLC deve ser a mesma.

P54: COMM Test


Este menu exibe os dados do computador host recebidos pelo instrumento e os dados enviados pelo instrumento para auxiliar o programador do computador host a depurar a comunicação.

Nota: Quando os dados RX estão incorretos, uma mensagem de erro é exibida



P55: SetTime

P56: ACC Clear

Depois que o fluxo acumulado é limpo, a hora atual é considerada como a hora inicial do fluxo acumulado e todos os registros são limpos. Nota: Leva de 2 a 3 minutos para limpar, não desligue ou opere o teclado.

P57: SubmergeRate

Menu	P57: Taxa de submersão = nível downstream / nível upstream * 100%		
Valor numérico	Faixa de valores	0~100%	
	Valor padrão	0%	
Menu relacionado	N/A		

Nota:

- 1: O coeficiente de vazão do medidor de vazão de canal aberto e o índice de vazão são baseados na vazão livre. Quando a capacidade de drenagem a jusante for inferior à vazão de entrada a montante, será produzido um fluxo submerso e uma taxa de submersão será estabelecida para modificar o fluxo;
- 2: Nenhuma correção de fluxo é necessária quando a taxa de submersão do açude retangular e do açude triangular é inferior a 45%; quando a taxa de submersão é superior a 95%, o fluxo instantâneo é de 0m3/h;
- 3: Nenhuma correção de fluxo é necessária quando a taxa de submersão, a calha Parshall e outros açudes é inferior a 70%; quando a taxa de submersão é maior que 95%, o fluxo instantâneo é de 0m3 / h;

P58: Power-FailAdd Switch

Menu	P58		
5 ^ .	Não	Fechar adição de falha de energia	Padrão
Parâmetros	Sim	Abrir adição de falha de energia	

Nota: Depois de ligar a adição de falha de energia, o instrumento contará o fluxo acumulado de acordo com o fluxo instantâneo e o intervalo de desligamento antes de desligar toda vez que for reiniciado.

P60: Sim. Current

Menu	P60	
	4.000mA	Force o instrumento a emitir corrente de 4.000mA
	8.000mA	Force o instrumento a emitir corrente de 8.000mA
Parâmetros	12.000mA	Force o instrumento a emitir corrente de 12.000mA
	16.000mA	Force o instrumento a emitir corrente de 16.000mA
	20.000 mA	Force o instrumento a emitir corrente de 20.000mA
Menu relevante	Nenhum	

Através deste menu e ampere medidor, verifique se a saída de corrente do instrumento está normal.

P62: Pulse Width

O instrumento pode emitir o sinal de pulso e carregar o fluxo acumulado para o instrumento de liquidação de fluxo ou PLC.

Menu	P62		
Parâmetros	Faixa de valores	6~100ms	
	Padrão	6ms	
Menu relacionado	P63		

Aviso: Número de pulsos × largura de pulso ≤ 500ms (caso contrário, o pulso não pode ser emitido; selecione razoavelmente P63 Pulse Equal.)

P63: Pulse Equal

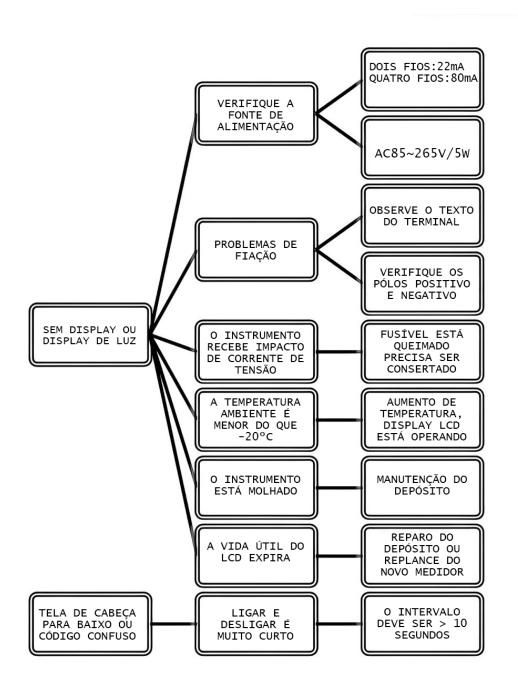
Menu	P63: Quando o fluxo adiciona um pulso igual, o instrumento emite um pulso				
Parâmetros	Faixa de valores	0,01 ~ 1000m3			
Farametros	Padrão	1m3			

Aviso: Por favor, selecione razoavelmente o pulso igual de acordo com a taxa de fluxo instantânea. (Número de pulsos × largura de pulso ≤ 500ms)

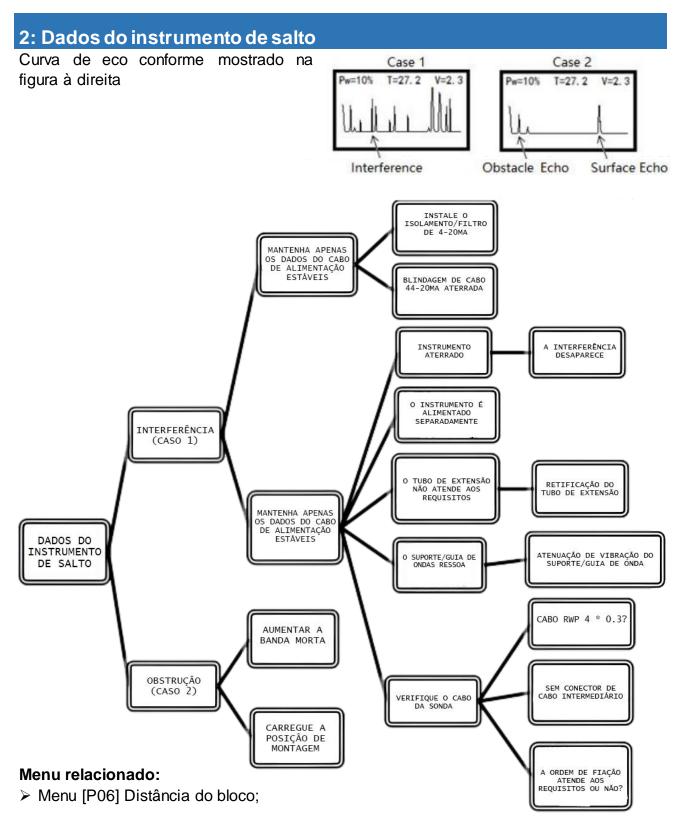
P66: TP Delay

Menu	P66	P66						
	12us	O cabo da sonda tem menos de 30 m	Padrão					
Parâmetros	18us	O cabo da sonda é de 30 ~ 60m						
raiamenos	24us	O cabo da sonda é de 60 ~ 100m						
	30us	O cabo da sonda é de 100 ~ 150m						

O comprimento do cabo, o diâmetro do fio, a temperatura afetarão o tempo de atraso da transmissão do sinal, a relação atraso/comprimento do cabo na tabela acima é apenas para referência.

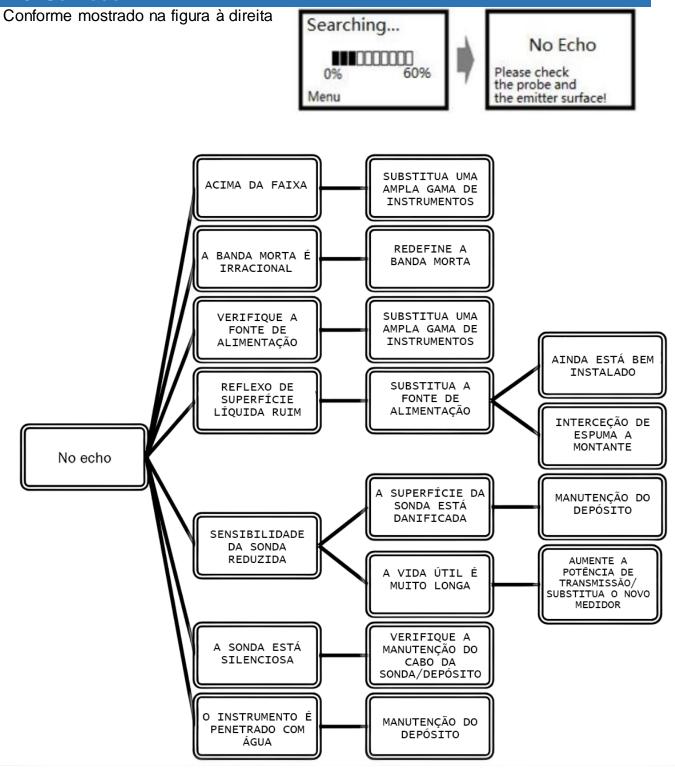

P99: Load Def.

Menu	P99		
Parâmetros	Não	Não restaure	Padrão
r arametros	Sim	Restaurar padrões de fábrica	


Análise de falhas e solução de problemas

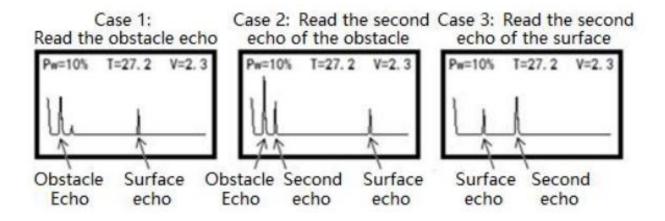
1: Sem display, display de cabeça para baixo e código bagunçado.

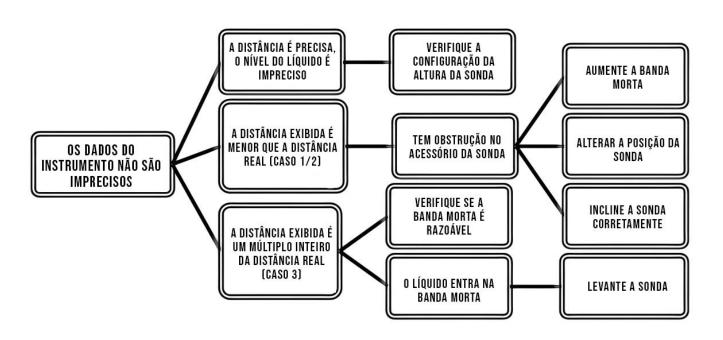
- ➤ A capa de sol / chuva para o instrumento pode prolongar a vida útil do instrumento.
- ➤ Se o instrumento for colocado em ambiente úmido durante todo o ano, recomenda-se pintar cimento de vidro no conector à prova d'água e na junta do instrumento ou envolver o instrumento com uma tampa à prova d'água (excluindo a sonda).



- > Como o instrumento é um medidor de corrente fraco, ele deve estar bem aterrado.
- ➤ O cabo de 4 ~ 20mA deve ser o cabo blindado com camada de blindagem aterrada de extremidade única, consulte o apêndice [diagrama de fiação]

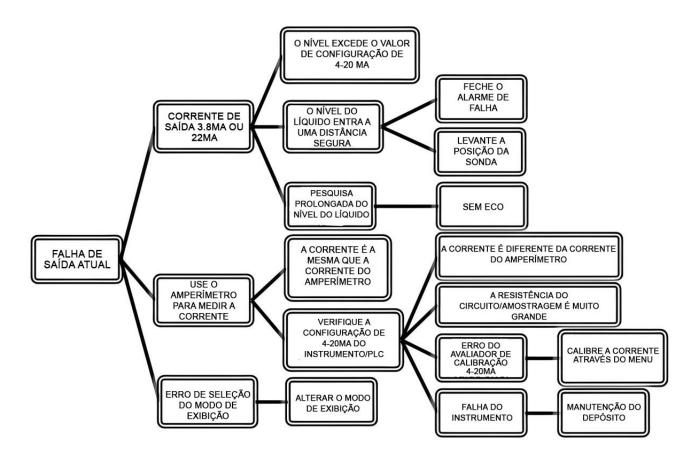
3: Semeco




Menu relacionado:

➤ Menu [P06] distância do bloco;

4: Os dados do instrumento são imprecisos, mas muito estáveis

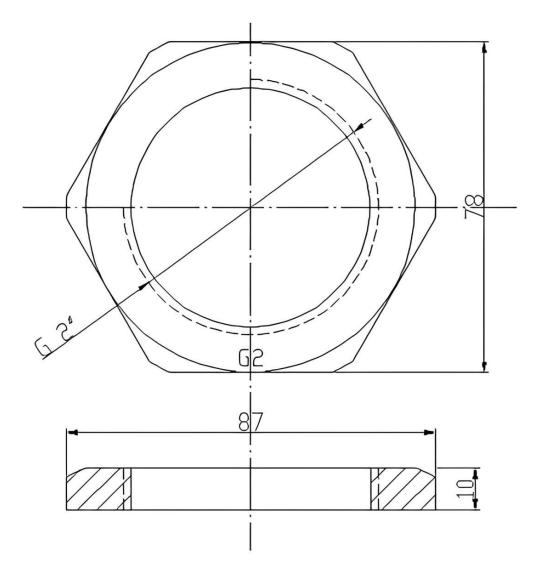


Menu relacionado:

- ➤ Menu [P04] Altura de montagem da sonda;
- ➤ Menu [P06] Distância do bloco;


5: Falha de saída de corrente de 4-20mA

Nota:


➤ A corrente inicial após a instrumentação de 2 fios é de 3.8mA. A corrente de saída será ajustada de acordo com [P02] 20mA após o nível do líquido ser procurado.

6: Saltando dados do PLC

Apêndice 1: Tamanho da porca de parafuso de plástico

Nota: A porca de plástico é feita do mesmo material que a sonda

Apêndice 4: Protocolo de comunicação Modbus-RTU

O instrumento adota o protocolo ModBus-RTU e se comunica com DCS / PLC / computador através da interface RS485.

O endereço deste registro de instrumentos é mostrado na tabela à esquerda.

Configuração padrão da porta serial RS485: Taxa de transmissão 4800, 1 bit de parada, sem bit de paridade, o número de identificação é 01.

Defina o número de identificação, a taxa de transmissão e a sequência do número do ponto flutuante através do menu.

Register Address							
Address	Content	Format	Format				
0000H	Relay Status	Bit					
0001H	Hold						
0002H	Level	Float IEEE754	High 16bit	~			
0003H	Levei	Float IEEE/134	Low 16bit	m			
0004H	Distance	Float IEEE754	High 16bit	m			
0005H	Distance	Float IEEE/34	Low 16bit] ' ' '			
0006H	Tomporatura	Float IEEE754	High 16bit	°C			
0007H	Temperature	Float IEEE/54	Low 16bit	-0			
H8000	Instant flow	flant IEEE754		m 2/h			
0009H	instant now	Float IEEE754	Low 16bit	m3/h			
000aH	Total Flow	Float IEEE754	High 16bit	m3			
000bH	TOLAL FIOW	Float IEEE/134	Low 16bit				
000cH	Current	Float IEEE754	High 16bit	mA			
000dH	Current	Float IEEE/34	Low 16bit				
000eH	Level	Hex		mm			
000fH	Distance	Hex		mm			
0010H	Temperature	Hex		0.1°C			
0011H	Current	Hex		uA			
0012H	Instant flow	Hex	High 16bit	l/h			
0013H	ii istai it iiUW	I ICV	Low 16bit				
0014H	Total Flour	Hav	High 16bit	m 2			
0015H	Total Flow	Hex	Low 16bit	m3			

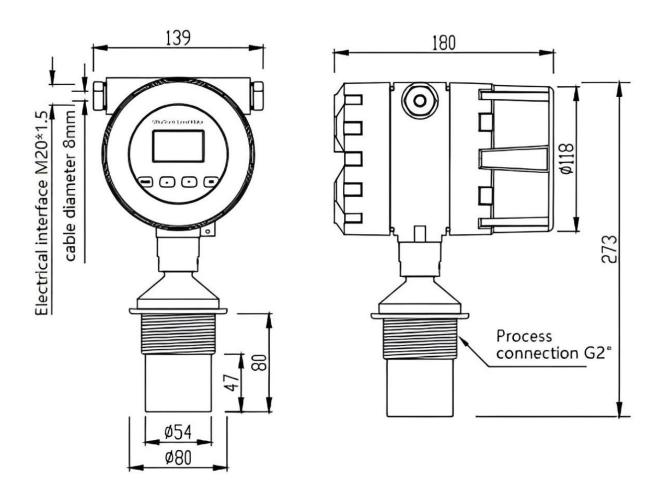
O menu [Teste de comunicação P54] é fornecido para exibir os dados recebidos / enviados.

Por exemplo, leia dados de fluxo instantâneo e cumulativo Quadro de dados de consulta

Dados	01H	03H	00H	08H	00H	04H	C5H	CBH

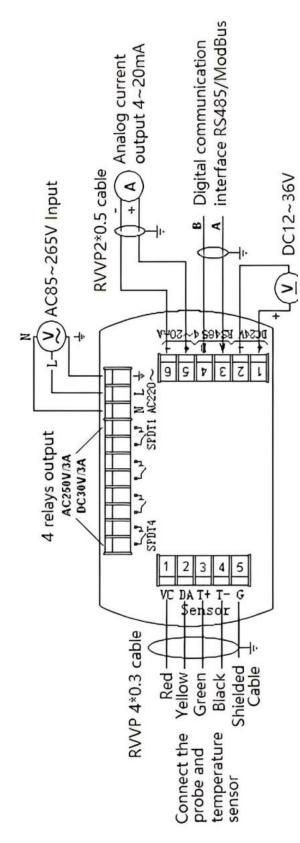
Quadro de dados de resposta

_														
	Data	01	03	08	42	F1	00	00	46	B7	41	00	65	CF

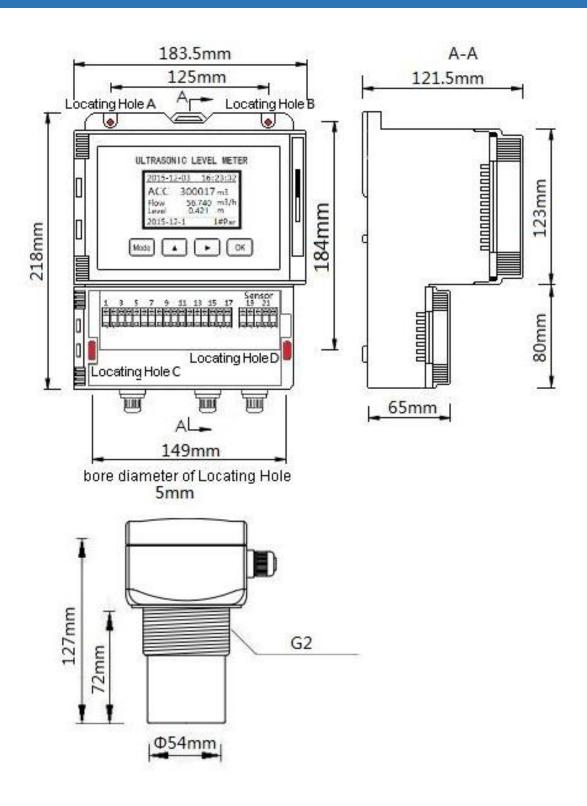

Entre eles, 0x42F10000 estão os números de ponto flutuante de formato IEEE754, indicando vazão instantânea de 120,5m3/h; 0x46B74100 é o fluxo acumulado de 23456,5m3.

[Observação]

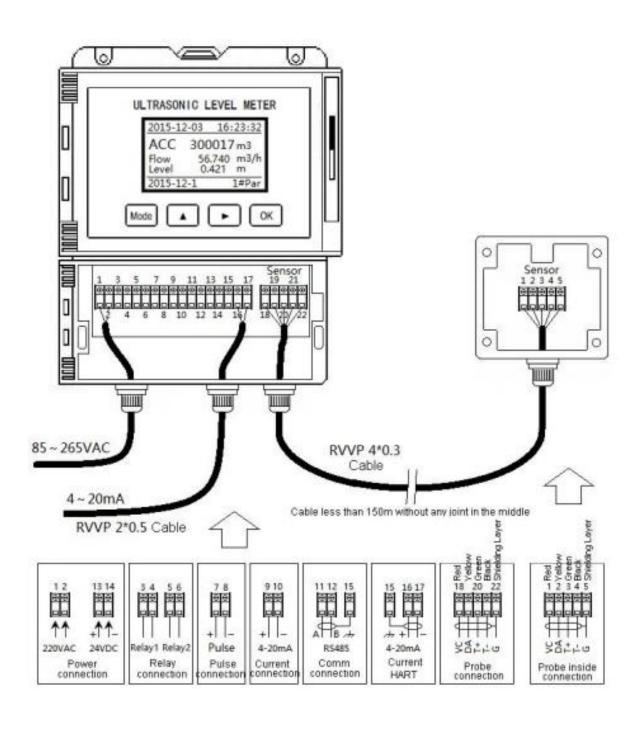
A frequência de transmissão do quadro de dados de consulta deve ser maior que 5 segundos!


Apêndice 5: Desenhos Dimensionais do Instrumento Integral

Nota: Se o instrumento estiver em ambiente úmido durante todo o ano, recomenda-se revestir o cimento de vidro na porta de entrada do cabo e na junta do instrumento ou envolver a tampa à prova d'água no instrumento (excluindo a sonda).


Apêndice 6: Diagrama de fiação integral do instrumento

- Como o monitor de fluxo de canal aberto é um instrumento de corrente fraca com alta ampliação interna, o aterramento do instrumento é essencial.
- A linha de 4-20mA deve ser um cabo blindado RVVP2x0.5 e não paralelo ao alinhamento da linha de energia.
- A linha da sonda deve ser um cabo blindado RVVP 4×0.3 sem qualquer junta no meio e não deve estar em paralelo com o alinhamento da linha de energia.
- ➤ O PLC conectado ao instrumento deve estar longe do inversor, motor e não compartilhar energia com o inversor. Caso contrário, um isolador de 4-20mA deve ser instalado.
- Se o instrumento estiver em ambiente úmido, recomenda-se revestir cimento de vidro na porta de entrada do cabo e na junta da tampa do instrumento ou envolver o instrumento com a tampa à prova d'água (sonda excluída).
- Fiação do medidor digital, consulte as instruções do formulário digital.



Apêndice 8: Dimensão do Instrumento Remoto

Anexo 9: Diagrama de fiação do instrumento remoto

Apêndice 10: Interface de saída de pulso

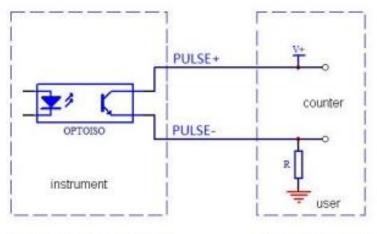
[Modo de saída A]

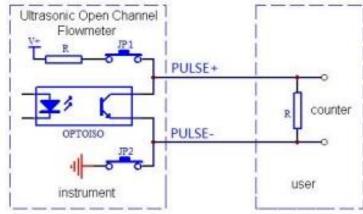
Saída passiva do modo OC (O resistor pull-up R precisa ser adicionado no lado do balcão.)

- ➤ A alimentação externa V+ pode ser de 5V/12V/24V.
- ➤ O resistor pull-up R é 2K ~ 10K.
- Gire o interruptor (1/2) para a posição "OFF".

Ultrasonic Open Channel Flowmeter PULSE+ counter optotso Instrument user

[Modo de saída B]


Saída passiva do modo OC (O resistor suspenso R precisa ser adicionado no lado do balcão.)


- PULSE+: Conecte a fonte de alimentação externa V+.
- > PULSE-: Emite o sinal de pulso.
- Gire o interruptor (1/2) para a posição "OFF".

[Modo de saída C]

Saída ativa do modo de nível, capaz de acionar diretamente a carga R

- ➤ O V+ interno é DC24V.
- Gire o interruptor (1/2) para a posição "ON".

Lista de embalagem

Não	Nome do equipamento ou acessório	Unidade	Quantidade	Observação
1	Medidor de vazão ultrassônico de canal aberto	Definir	1	
2	Porca de parafuso de plástico (padrão) Flange ou suporte DN32 (opcional)	Peça	1	
3	Instrução de operação	Livro	1	
4	Certificado de qualificação do produto	Peça	1	

Pontos de atenção

- ➤ Não agite ou colida o equipamento intensamente durante o uso e transporte.
- ➤ Durante o transporte e armazenamento do instrumento, a temperatura ambiente não deve ser inferior a -40 °C ou superior a +70°C; a humidade relativa não deve exceder 85%; não deve haver gás corrosivo ou campo eletromagnético intenso ao redor; A caixa de embalagem original deve ser usada durante o transporte.

Todos os direitos reservados

Esta empresa reserva todas as patentes do mundo. Sem permissão prévia por escrito desta empresa, quaisquer partes deste instrumento, incluindo o código-fonte, não devem ser copiadas, transmitidas, transcritas ou traduzidas para qualquer idioma ou linguagem de computador de qualquer forma ou formas eletrônicas, eletromagnéticas, ópticas, artificiais ou outras.

Sem permissão prévia por escrito desta empresa, toda ou qualquer parte deste manual não deve ser copiada, fotocopiada, reimpressa, traduzida ou transmitida para qualquer mídia eletrônica ou legível por máquina.

Nome e marca no produto são marcas registradas ou marcas comerciais desta empresa. Todas as outras marcas registradas, nomes comerciais ou nomes de empresas aqui mencionados são apenas para fins de identificação; eles são ativos dos respectivos proprietários.

Recibo do cartão de garantia

Nome de usuário		
Endereço de contato		
Pessoa de contato	Telefone de contato	
Tipo de produto	Número do produto	
Data de entrega	Responsável pela instalação	

Descrição do Cartão de Garantia

Tipo de produto	Número do produto	
Data de entrega	Responsável pela instalação	

Política de garantia:

- O usuário deve mostrar o Cartão de Garantia durante a manutenção. Com o Cartão de Garantia, as falhas decorrentes do uso normal durante o período de garantia podem ser reparadas gratuitamente, conforme estipulado.
- ➤ Período de garantia: o período de garantia de nossos produtos é de 24 meses a partir da data de entrega. Esta empresa oferece extensão paga do período de garantia.

Os seguintes casos estão além do escopo da garantia gratuita:

- > O produto ou seus componentes excedem o período de garantia gratuito.
- As falhas de hardware resultam do ambiente operacional que não está em conformidade com os requisitos operacionais do produto.
- ➤ O mau ambiente da fonte de alimentação ou a entrada de materiais estranhos no equipamento causam falhas ou danos.
- As falhas são causadas porque o usuário não opera de acordo com os métodos de uso e pontos de atenção no manual de operação.
- As falhas são causadas por força maior, como trovões, raios, inundações e incêndios. A desmontagem arbitrária do equipamento, modificação além da autoridade ou abuso do equipamento leva a falhas ou danos.

